CVAT部署及自动化标注配置
系统要求 Ubuntu 22.04/20.04 (x86_64/amd64) Docker Nvidia Driver Nvidia Container Toolkit 部署及HTTPS配置 clone项目 git clone https://github.com/cvat-ai/cvat cd cvat 配置域名及ACME邮箱 echo "export CVAT_HOST=<域名>" >> env.sh echo "export ACME_EMAIL=<ACME通知邮箱>" >> env.sh source env.sh 启动 source env.sh docker compose -f docker-compose.yml -f docker-compose.https.yml -f components/serverless/docker-compose.serverless.yml up -d cvat 端口 80/443 nuclio 端口 8070 停止 source env.sh docker compose -f docker-compose.yml -f docker-compose.https.yml -f components/serverless/docker-compose.serverless.yml down 安装nuctl 官方参考文档 查看版本 cat components/serverless/docker-compose.serverless.yml | grep image 下载(比如1.13.0) version=1.13.0 wget https://github.com/nuclio/nuclio/releases/download/${version}/nuctl-${version}-linux-amd64 sudo chmod +x nuctl-${version}-linux-amd64 sudo ln -sf $(pwd)/nuctl-${version}-linux-amd64 /usr/local/bin/nuctl # 确认是否生效 nuctl version 部署函数(将自动在nuclio上创建cvat项目) ./serverless/deploy_cpu.sh serverless/openvino/dextr ./serverless/deploy_cpu.sh serverless/openvino/omz/public/yolo-v3-tf 添加自训练模型用于自动标注 在serverless目录下创建 自定义函数目录,这里以自训练的YOLO11目标检测模型为例 ...